全国统一服务热线:

13636672766

应用领域Industry news

您的位置:主页 > 应用领域 >

转盘轴承力矩载荷下的变形计算

2021-02-04 06:39

  转盘轴承力矩载荷下的变形计算_机械/仪表_工程科技_专业资料。推荐力矩载荷计算

  转盘轴承力矩载荷下的变形计算 摘 要:通过分析四点接触转盘轴承受倾覆力矩时的套圈位移与接触变 形、轴承接触角变化的关系,得出转盘轴承倾覆力矩载荷下套圈倾角变形计算公式, 为转盘轴承力矩载荷下变形提供了精确的计算方法。最后用所得的力矩计算公式进 行实例计算,并做出力矩-变形曲线。 关键词: 关键词:四点接触;转盘轴承;力矩载荷;变形计算 转盘轴承主要用在起重、建筑工程等大型机械设备中,国内也对其进行了较多 的研究。转盘轴承主要承受的是轴向力和倾覆力矩,而在很多情况下,倾覆力矩是 轴承的主要载荷。在力矩作用下,轴承的转角变形将很大的影响着整个机械的刚度 和工作精度等性能。所以有必要对转盘轴承力矩载荷承载-变形关系进行分析。 以往的转盘轴承在力矩作用下变形计算公式复杂, 且计算过程中有时难以收敛。 这里对四点接触转盘轴承承载时变形的几何关系进行分析,得到轴承转角位移与接 触变形的关系计算式。在此基础上,推导出转盘轴承的倾覆力矩与变形计算式。 一、转盘轴承的受力变形 四点接触转盘轴承受倾覆力矩时,轴承内、外套圈产生相对倾角,设外圈保持 固定不动。忽略倾角引起的径向位移,则受力后的处在位置角 i 处滚珠(0≤)由于 转角而引起的轴向位移为: ai= cosi (1) 式中:Dw——滚珠中心圆直径(mm)。 转盘轴承的套圈位移和滚珠接触变形如图 1 所示。 在外沟道曲率中心 Oe 建立坐 标系,变形前的内沟道中心为 Oi,坐标分别为(x,y)。变形后的内沟道中心 Oii, 坐标分别为(xi,yi)。A 和 Ai 分别是变形前后的沟道中心距。 则变形前内外沟道中心距: A=re+ri-Dw(2) 式中:ri、re——内、外沟道曲率半径(mm); Dw——滚珠直径(mm)。 变形前内沟道曲率中心 Oi 的坐标(x,y): y=Acos(3) 式中:——初始接触角 x=Asin (4) 转盘轴承受矩载荷引起内外套圈位移后,位置角 i 处内、外圈沟道曲率中心距 为: Ai=re+ri-(Dw-i)(5) 式中:i——内外套圈和滚珠接触变形总量(mm)。 套圈移动后内沟道曲率中心 Oii 坐标(xi,yi): yi=Aicosi (6) xi=Aisini(7) 式中:i ——套圈位移后,位置角 i 处的接触角。 即有 Ai=(8) 轴承位移前后内沟道曲率中心的坐标关系: xi=x+ai(9) yi=y(10) 由式(3)、式(6)、式(8)、式(9)和式(10)可以得到转盘轴承受力位移后的接触 角: cosi =(11) 将式(8)、式(9)和式(10)代入式(5)中得出转盘轴承位移 ai 和滚珠接触弹性变 形 i 关系式: i=Dw -(re+ri-)(12) 二、转盘轴承倾覆力矩的计算 四点接触转盘轴承某滚珠上的接触受力由点接触的受力变形关系计算公式 : Qi=Ki i3/2 (13) 式中:Qi——滚珠和套圈接触受力(N); i——滚子与内外套圈接触处的总的弹性变形量(mm); Ki——系数。 对于滚珠与内外套圈接触的系数: Ki=1/(2.97×10-4[(∑ii)1/3+(∑ie)1/3])3/2 式中,、是滚珠与内、外圈点接触相关的系数,可根据文献[7]计算内、外沟道 主曲率函数 F(ii)、F(ie)进行查表得到。内、外沟道主曲率和∑ii (ie)=×(2+-), 参数 i=,fi、fe 分别为内、外沟道沟曲率半径系数。主曲率和以内圈接触 “±” 取“-”,以外圈接触计算“±”取“+”。 在转盘轴承承受倾覆力矩时,内外圈产生相对倾角,使每个滚子的受力大小各 不相同。由图 2 可知,每个滚珠上由接触受力产生的力矩 将式(13)带入上式,得到: Mi=Kii3/2sinicosi(15) 根据四点接触转盘轴承在力矩载荷下,外载荷与内部滚子负荷平衡的条件,轴 承受到总力矩 M=Mi=Kii3/2sinicosi(16) 式中,sini 由式(11)得 sini=(1-()2)1/2。 将式(1)、(12)、(13)带入式(16)中,得 M=Ki(Dw-(re+ri-((x+cosi)2+y2)1/2))3/2 ?(1-)1/2cosi(17) 上式可知,倾覆力矩 M 是倾角的非线性函数,可经过计算机非线性数值计算方 法反复进行迭代求解。 三、实例分析 某四点接触转盘轴承,结构参数:Dw=40,Dw=1900,初始接触角 a=50°,滚珠 数 Z=120,内、外沟曲率半径系数 fi(e)==0.53。试分析其倾覆力矩 M 与倾角的关系 曲线。 该轴承初始中心距由式(1)得: A=re+ri-Dw =2.4mm 初始内沟道曲率中心 Oi 的坐标(x,y)由式(2)、式(3)得: y=Acos=2.4cos50°1.54269mm x=Acos=2.4sin50°1.83851mm 滚珠受力过程中接触角增加使系数 Ki 略有增加。经过计算表明,系数 Ki 在接 触角为 80°比接触角为 50°大 0.4%。因此,简便起见,系数 Ki 按初始接触角 50° 计算。具体计算结果如下: ri===0.01353237 ∑ii=0.0535160889 ∑ie=0.053506931 F(ii)=0.894230362 查表并插值计算得=0.689077493 (ie)=0.891485912 查表并插值计算得=0.692919723 则 Ki=1/(2.97×10-4[(∑ii)1/3+(∑ie)1/3])3/2 ≈570954 将已知相关数据带入式(17)进行计算,得: M=570954(Dw-(re+ri-((x+cosi)2+y2)1/2))3/2 ?(1-)1/2cosi 用 MATLAB 对上式进行牛顿法非线性数值计算。经过程序运算后,倾覆力矩 M 与 轴承倾角变形的关系曲线 所示: 四、结语 四点接触转盘轴承力矩载荷下倾角变形对机械的工作性能有很大的影响。通过 对转盘轴承承载时变形的几何关系进行分析,推导出转盘轴承的倾覆力矩与变形关 系计算式。并进行了实例计算,绘制出力矩-变形曲线。整个计算过程简便,为四点 接触转盘轴承力矩载荷下变形分析提供了理论依据。这将有助于四点接触转盘轴承 的设计、使用以及刚度、振动的分析。 参考文献 [1]徐立民,陈卓.回转支承[M].合肥:安徽科学技术出版社,1988. [2]杜睿,吴志军.单排球式回转支承的承载能力分析[J].机械设计与制造, 2006,(9). [3]苏立樾,苏健.转盘轴承静载荷承载曲线]汪洪, 陈原.转盘轴承承载能力及额定寿命的计算方法[J].轴承, 2008, (2). [5]郑兰疆,李彦,赵武,等.大型回转轴承的承载性能分析[J].机械设计与研 究,2008,.,1991. [7]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987. [8]常巍, 谢光军, 黄朝峰.MATLABR2007 基础与提高[M].北京:电子工业出版社, 2007.

联系方式 / CONTACT US

地址:

江苏东台市高新技术开发区中华园西路136号

电话:

13636672766

邮箱:

5440546554@qq.com